- 1) Graph
- 2) Put In Interval Notation

## **GUIDED PRACTICE**

**1. Vocabulary** A graph of an inequality on a number line with two parts is a ? . (conjunction, disjunction)

**SEE EXAMPLE** 1 Solve each compound inequality. Then graph the solution set.

p. 150 **2.** 
$$x-7 > -3 \text{ OR } 5x \le -15$$
 **3.**  $3x \le 18 \text{ AND } x + 4 > 2$ 

**3.** 
$$3x \le 18$$
 AND  $x + 4 > 2$ 

**4.** 
$$x - 2 > -5$$
 OR  $5x \ge 25$ 

**SEE EXAMPLE 2** Solve each equation.

p. 152 5. 
$$|x+5|=2$$

5. 
$$|x+5|=2$$

**6.** 
$$|2x| - 6 = 4$$

7. 
$$|-x|+4=7$$

**SEE EXAMPLE 3** Solve each inequality. Then graph the solution set.

p. 152 
$$|2x-3| \ge 5$$

9. 
$$2|x-3| > 8$$

$$|3x| + 8 > 5$$

**SEE EXAMPLE** 4 1 
$$|4x+8|$$
  $3 < 8$ 

(12) 
$$|9 - 3x| \le 6$$

(3) 
$$-5|x-3| \ge 15$$

### Independent Practice For See Exercises Example

### 14-15 1 16-19 2 20-23 3 24-27 4

# TEKS 📌 TAKS

Skills Practice p. S7 Application Practice p. S33

## PRACTICE AND PROBLEM SOLVING

Solve each compound inequality. Then graph the solution set.

**14.** 
$$2x - 3 \ge 7 \text{ OR } x + 5 < 2$$

**15.** 
$$3x + 6 \le 21$$
 AND  $4x - 2 \ge -6$ 

Solve each equation.

**16.** 
$$|-3x| = 9$$

**17.** 
$$|x+7|=2$$

**18.** 
$$|3x - 9| = 6$$

**19.** 
$$5|2x|-6=24$$

Solve each inequality. Then graph the solution set.

**20** 
$$|-2x| < 2$$

**21** 
$$|x+5| \ge 2$$

$$|8x| + 56 \ge 40$$

$$|8x| + 56 \ge 40$$
  $|7x + 14| \ge 35$ 

$$|-0.5x| > 1$$

**25** 
$$6|2x+5| > 66$$

**26** 
$$-8|x+4| > 48$$

**25** 
$$6|2x+5| > 66$$
 **26**  $-8|x+4| > 48$  **27**  $\frac{|8x+4|}{6} < 10$ 

Write a compound inequality for each graph.

Solve and graph.

**32.** 
$$5x-9 > 11 \text{ AND } 7x + 12 \le 63$$

**34.** 
$$4(3-2x) < -20$$
 AND  $\frac{3}{2}x - 4 < 5$ 

**32.** 
$$5x-9 > 11$$
 AND  $7x + 12 \le 61$  **33.**  $7x + 4 \le 3x - 12$  OR  $\frac{9x - 15}{5} > 6$ 

**35.** 
$$5x + 12 > 2x - 3 \text{ OR } 3 - 5x < -17$$

**36. ## ERROR ANALYSIS ##** Find and explain the error in one solution below.





**TEKS** 2A.2.A

# **Practice B**

Complete The Circled Problems

LESSON

# Solving Absolute-Value Equations and Inequalities

Solve each equation.

$$1.|2x + 1| = 7$$

$$|-7x| = 28$$

$$3|3x| - 7 = 2$$

$$|2x-5|=5$$

**(5)** 
$$2|x+1|=14$$

**6** 
$$|4-x|+2=9$$

Solve each inequality or compound inequality. Then graph the solution.

7. 
$$-4x + 2 > -10$$
 and  $5x - 12 < 8$ 

**8.** 
$$3x - 4 \ge 8 \text{ or } -x + 12 > 16$$





















## Solve.

**13.** Any measurement is accurate within  $\pm 0.5$  of the measurement unit. For example, if you measure your pencil to the nearest inch, your measurement could be 0.5 inch too long or 0.5 inch too short. Write an absolute-value inequality that shows the maximum and minimum actual measure of a nail measured to be 4.4 centimeters to the nearest 0.1 centimeter.